A Day-Ahead Short-Term Load Forecasting Using M5P Machine Learning Algorithm along with Elitist Genetic Algorithm (EGA) and Random Forest-Based Hybrid Feature Selection

نویسندگان

چکیده

A hybrid feature selection (HFS) algorithm to obtain the optimal set attain forecast accuracy for short-term load forecasting (STLF) problems is proposed in this paper. The HFS employs an elitist genetic (EGA) and random forest method, which embedded online (FS). Using selected features, performance of forecaster was tested signify utility methodology. For this, a day-ahead STLF using M5P (a comprehensive approach regression tree concept) implemented with FS without (WoFS). (with WoFS) compared forecasters based on J48 Bagging. simulation carried out MATLAB WEKA software. Through analyzing forecasts Australian electricity markets, evaluation indicates that input by consistently outperforms larger sets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest

The prediction accuracy of short-term load forecast (STLF) depends on prediction model choice and feature selection result. In this paper, a novel random forest (RF)-based feature selection method for STLF is proposed. First, 243 related features were extracted from historical load data and the time information of prediction points to form the original feature set. Subsequently, the original fe...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

Hybrid filter-wrapper feature selection for short-term load forecasting

13 Selection of input features plays an important role in developing models for short14 term load forecasting (STLF). Previous studies along this line of research have focused 15 pre-dominantly on filter and wrapper methods. Given the potential value of a hybrid 16 selection scheme that includes both filter and wrapper methods in constructing an 17 appropriate pool of features, coupled with the...

متن کامل

A New Hybrid Algorithm for Short Term Load Forecasting

In restructuring the electric power industry, the load had an important role for market managers and participants when they develop strategies or make decisions to maximize their profit. Therefore, accurate short term load forecasting (STLF) becomes more and more vital for all market participants such as customer or producer in competitive electricity markets. In this paper, a new hybrid algori...

متن کامل

A hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements

Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16020867